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Single-molecule magnets (SMMs) have attracted considerable
interest because they represent nanoscale magnetic particles with
a well-defined size and potential applications in data storage and
guantum computatioh? The major goal is to synthesis new SMMs
containing a large effective anisotropy energy bardgs~ |D|<,
which results from the combination of a large-spin ground state
(9 and an Ising-type magnetic anisotropy (negative zero-field
splitting parameteD).3 The prototype SMM [M;01,(0,CCHg)16-
(H20)4] (2) has been extensively studittt.possesses a large energy
barrier due to its high spin ground stéie= 10 and large negative
zero-field splitting of> —0.5 cnT!. Few high nuclearity manganese
SMMs with spin ground states betwe8r= 6 and 83/2 have been
reported; however, the values b are relatively smalf. Thus,

Figure 1. ORTEP representation anio® at 30% probability level.
Hydrogen atoms have been omitted for clarity.

many current research objectives for manganese(lll) SMMs have 21
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We herein report a new SMM (NB§[MnsO(salox}(Ns)sCls] z 20 33 4
(2), which contains a trigonal bipyramid MgMn!'; structure with % PTG
a large magnetic anisotropy approachindea of complexl, even
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susceptibility out-of-phaseyf'') peaks in the 26 K range and
large hysteresis loops below 3.0 K. Although a cyanide bridged
trigonal bipyramid{[Mn" (tmphen}]s[Mn" (CN)s]2} (3) complex
has been reported, the anisotropy energy barrier of contpiex
small?®

Reaction of MnGJ-4H,0, sodium azide, and salicyladoximex{H
salox) with NEtOH in MeOH at room temperature resulted in a
deep green solution from which (NfE[MnsO(salox}(N3)sCl;]
formed in 14% yield. The compound crystallizes in rhombohedral
space grougR3c. Crystal structure of the anion of compl&¥ is
shown in Figure 1. The molecular geometry of Mim2 is a trigonal
bipyramid in which four-coordinate Mnions occupy the apical
positions and six-coordinate Mnions reside in the equatorial
triangular plane with a cappings-O?~ ion. The C; axis is
perpendicular to the Mt plane and passes through Mions and
the central oxygen. Each Mnon is linked by three end-on azide
bridges to M#! centers, and a terminal Ctompletes tetrahedral
ligation, while the octahedral ligation of each Mnions is
completed by a bridging::n%u-saloX~ group, whose phenol
ring is bound terminally to a Mn. Bond valence sum (BVS)
calculation! and the presence of MnJahr-Teller (JT) elongation
axes establish the oxidation states of manganese and the protonatio
level of &~ and salo%™ O atoms. In addition, the JT axes (N2
Mn1—N5) of Mn'" ions are almost parallel to each other as well

Figure 2. ymT versusT plot for 2 at 100 G. The solid line represents a
least-squares fit of the data. Inset: Plot of reduced magnetization versus
H/T between 2 and 4 K. Solid lines represent least-squares fit of the data.
as to the crystallographi€; axis. The shortest intermolecular
Mn---Mn distance is 8.65 A.

The variable temperature DC magnetic susceptibility data were
collected for a powder sample of compoudh the temperature
range of 2-300 K at a magnetic field of 100 G (Figure 2). The
value ofymT increase steadily from 18.83 émol~ K at 300 K
as the temperature is lowered, to reach a maximum of 47.82 cm
mol~1 K at 6.0 K, and then decrease to 46.913cmol~! K at
2.0 K. TheyuT value at 300 K is significantly larger than 17.75
cm?® mol~! K, the value expected for a MgMn'"'; complex with
noninteracting metal centers with= 2.0. This behavior clearly
indicates the ferromagnetic coupling withizy and the small
decreasing ipm T at low temperature is likely the result of Zeeman
effect, intermolecular interactions, or zero-field splitting in the
ground state. In order to describe the coupling within the cluster,
the magnetic susceptibility data were fit to the appropuateersus
T using a Mt ,Mn'"'; Heisenberg-vanVleck model (see Figure 4S
in Supporting Information). The data below 6.0 K were omitted in
the fitting because zero-field splitting and Zeeman effects likely
dominate in this temperature range. The fitting result of DC data
in 100 G gave the best fit parametersgof 1.98,J;(Mn"' —Mn'")

Mol Chem =0.23 cmt, Jp(Mn'" —Mn'') = 2.41 cn*. This set of parameters
tLabormoire Lodie L,‘\,?g, R Y led to a ground stat; = 11 and a first excited sta@= 10 being
8 National Taiwan University. closely by at 3.2 cm.
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Figure 3. Plots of out-of-phaseyfy') AC susceptibility versu3 in 3.5 G
AC field oscillating at indicated frequencies farinset: Arrhenius law fit
of the combined AC and DC data.
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To identify the ground state, magnetizatioM)( data were
collected in the 2.64.0 K and 10-70 kG ranges (inset of Figure
2). The results were fitted by using the program ANISOFfhat
assumes only the ground state is populated, includes axial zero- 1 05 o o5 1
field splitting (D) and Zeeman interactions, and incorporates a full HoH (T)

powder average. The best and equally good fits to the data areFigure 4. Magnetization hysteresis loops for a single crystaPp{top)
obtained withS= 11,g = 1.90, andD = —0.22 cn1? (—0.32 K) from 3.0 to 0.04 K at 0.14 T3 scan rate; (bottom) for different scan rates
’ L | ' ’ atT = 0.04 K.
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E = —0.071, and thus, the calculated energy barrier to relaxation
(ID|SA) is 26.6 cnmrt (38.3 K). Attempts to fit the data by usirfg)
= 10 resulted in unreasonable valuegf 2.12.

To investigate whethe2 might be a SMM, AC susceptibility
measurements were performed in a 3.5 G AC field oscillating at

In conclusion, comple represents a new example of SMMs,
with the anisotropy energyes of 40.3 K. QTM was observed and
allowed us to estimate the anisotropy parameter of the two lowest

spin states.
250-1500 Hz and with a zero-applied DC field. The frequency
dependent amplitude of the in-phage 'l signal increased as the Acknowledgment. The magnetic measurements were obtained
temperature was lowered, reached a maximum value at54(M from SQUID (MPMS XL-7) in NSYSU, and we thank the National
K, and finally approached zero (Figure 5S). The out-of-phagg)(  Science Council of Taiwan for financial support.

signals showed clear frequency and temperature dependences
(Figure 3). As the frequency of the AC field was changed from
1500 to 250 Hz, theyy" peak shifted from 4.1 to 3.5 K. This

frequency dependence of the AC signals suggests that corBplex
is a SMM. Additional relaxation versus time measurements Were g o0 o
obtained at a temperature below 3.2 K by the DC magnetization
decay versus time measurements (Figure 10S). This gave a set o

Supporting Information Available: Crystallographic details in CIF
format, bond valence sums, and magnetism data. This material is
available free of charge via the Internet at http://pubs.acs.org.
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